ФЭНДОМ


Вектор Править

Понятие вектор в геометрии отлично от определяемого в алгебре. Различают понятие свободного и связанного (закреплённого) вектора.

  • Связанный вектор или направленный отрезок — упорядоченная пара точек эвклидова пространства.
  • Свободный вектор — класс эквивалентности направленных отрезков.

При этом два направленных отрезка считаются эквивалентными, если они:

  • коллинеарны
  • равны по длине
  • одинаково направлены (сонаправлены)

Линейные операции над векторами Править

Сложение векторов Править

Сложение трех свободных векторов можно осуществлять как по правилу параллелограмма, так и по правилу треугольника. Править

Правило треугольника Править

Для сложения двух векторов $ \overrightarrow u $ и $ \overrightarrow v $ по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.

Правило параллелограмма Править

Для сложения двух векторов $ \overrightarrow u $ и $ \overrightarrow v $ по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.

Модуль суммы Править

Модуль (длину) вектора суммы определяют по теореме косинусов, где $ \alpha $ — угол между векторами, когда начало одного совпадает с концом другого.

Умножение вектора на скаляр Править

Произведением вектора $ \overrightarrow u $ и числа $ \lambda $ называется вектор, модуль которого равен $ \lambda u $, а направление совпадает с направлением вектора $ u $, если $ \lambda > 0 $, и противоположно ему, если $ \lambda < 0 $. Если же $ \lambda = 0 $, или вектор $ \overrightarrow u $ нулевой, тогда и только тогда произведение — нулевой вектор.

Скалярное произведение Править

Скалярным произведением векторов $ \overrightarrow u $ и $ \overrightarrow v $ называют число, равное $ |u||v|\cos \alpha $, где $ \alpha $ — угол между векторами $ \overrightarrow u $ и $ \overrightarrow v $. Обозначения: $ uv $ или $ |\overrightarrow {uv}| $.

Если один из векторов является нулевым, то несмотря на то, что угол $ \alpha $ не определён, произведение равно нулю.

Свойства скалярного произведения векторов:

  • коммутативность
  • дистрибутивность
  • линейность по отношению к умножению на число

Векторное произведение Править

Векторным произведением вектора $ \overrightarrow u $ на вектор $ \overrightarrow v $ называется вектор $ \overrightarrow w $, удовлетворяющий следующим требованиям:

  • длина вектора $ \overrightarrow w $ равна произведению длин векторов $ \overrightarrow u $ и $ \overrightarrow v $ на синус угла $ \alpha $ между ними
  • вектор $ \overrightarrow w $ ортогонален каждому из векторов $ \overrightarrow u $ и $ \overrightarrow v $ (проще говоря, если $ \overrightarrow u $ и $ \overrightarrow v $ перенести так, чтобы они выходили из одной точки, $ \overrightarrow w $ будет нормален к плоскости векторов $ \overrightarrow u $ и $ \overrightarrow v $)
  • вектор $ \overrightarrow w $ направлен так, что тройка векторов $ \overrightarrow u \overrightarrow v \overrightarrow w $ является правой

Обозначение: $ [\overrightarrow u \times \overrightarrow v] $

Геометрически векторное произведение есть ориентированная площадь параллелограмма, построенного на векторах $ \overrightarrow u $ и $ \overrightarrow v $, представленная псевдовектором, ортогональным этому параллелограмму.

Свойства векторного произведения:

  • При перестановке сомножителей векторное произведение меняет знак (антикоммутативность)

Скаляр Править

(от лат. scalaris — ступенчатый) — величина (возможно переменная, то есть функция), каждое значение которой может быть выражено одним числом (чаще всего подразумевается действительное число).